

Date: 18-11-2024

 Dept. No.

Max. : 100 Marks

Time: 01:00 pm-04:00 pm

SECTION A – K1 (CO1)

	Answer ALL the questions	(5 x 1 = 5)
1	Answer the following	
a)	State Khintchin's theorem.	
b)	Define multiple correlation coefficient.	
c)	Write the sufficient conditions for consistent estimators.	
d)	Describe the concept of critical region.	
e)	Define Markov chain.	

SECTION A – K2 (CO1)

	Answer ALL the questions	(5 x 1 = 5)
2	MCQ	
a)	For a random variable X , which one is true?	
	(i) $E(X^2) = [E(X)]^2$ (ii) $E(X^2) \leq [E(X)]^2$ (iii) $E(X^2) \geq [E(X)]^2$ (iv) None	
b)	If the regression lines coincide with each other, then the value of γ is	
	(i) -1 (ii) +1 (iii) 0 (iv) ± 1	
c)	The formula for the variance of a maximum likelihood estimator have been derived from:	
	(i) Rao-Blackwell Theorem (ii) Cramer -Rao inequality (iii) LR test (iv) None	
d)	Identify the symbol used for the power of the test:	
	(i) α (ii) β (iii) $1-\alpha$ (iv) $1-\beta$	
e)	The mean of the random process is often expressed as	
	(i) Rank correlation (ii) Variance (iii) Ensemble average (iv) Auto-correlation	

SECTION B – K3 (CO2)

	Answer any THREE of the following	(3 x 10 = 30)
3	Let two random variables X and Y have the following joint probability density function: $f(x, y) = \begin{cases} \delta(2-x-y), & 0 \leq x \leq 1, 0 \leq y \leq 1 \\ 0, & \text{otherwise} \end{cases}$ Find (i) the constant δ (ii) Marginal density functions of X and Y (iii) Conditional density functions (iv) $\text{Var}(X)$, $\text{Var}(Y)$ and (v) $\text{Cov}(X, Y)$.	
4	Using repeated rank method, calculate the rank correlation coefficient for the following data:	

X	15	20	27	13	45	60	20	75
Y	50	30	55	30	25	10	30	70

5	Apply the Cauchy-Schwarz inequality and prove the Cramer-Rao inequality.
6	State and prove Neyman-Pearson fundamental lemma.
7	A class of modulated signals is modelled by the process $Y(t) = AX(t)\cos(\omega t + \theta)$, where $X(t)$ is the message signal which is a random process with mean 0 and autocorrelation function $R_{XX}(\tau)$. $A\cos(\omega t + \theta)$ is the carrier with amplitude A and the frequency ω are constants and the initial carrier phase θ is uniformly distributed in $[-\pi, \pi]$. Also $X(t)$ and θ are independent. Show that $Y(t)$ is a WSS process.

SECTION C – K4 (CO3)

	Answer any TWO of the following	(2 x 12.5 = 25)
8	State and prove weak law of large numbers. Also, show that the weak law of large numbers cannot be applied to the independent variables $X_1, X_2 \dots X_n$ with equal probabilities $P[X_i=i]=\frac{1}{2} \wedge \text{red}$ $P[X_i=-i]=\frac{1}{2}, i=1,2 \dots n.$	
9	A random sample (X_1, X_2, X_3) of size 3 is drawn from a normal population with mean μ and variance σ^2 . Let E_1, E_2 and E_3 are the estimators used to estimate mean value μ , where $E_1 = X_1 + X_2 - X_3, E_2 = 2X_1 + 3X_3 - 4X_2$ and $E_3 = \frac{1}{3}(\tau X_1 + X_2 + X_3)$. (i) Are E_1 and E_2 unbiased estimators? (ii) Calculate the value of τ such that E_3 is unbiased estimator for μ . (iii) Analyse the best estimator.	
10	Given the frequency function $f(x, \theta) = \frac{1}{\theta}, 0 \leq x \leq \theta$ and 0 otherwise. Suppose you are testing the hypothesis $H_0: \theta = 1$ against $H_1: \theta = 2$ by means of a single observed value of x , then analyze the sizes of the type I and II errors if you choose the interval (i) $0.5 \leq x \leq 1$ (ii) $1 \leq x \leq 1.5$ as the critical regions?	
11	Prove the following statements: (i) A first order stationary random process has a constant mean. (ii) For a second order stationary process, the autocorrelation function is a function of time difference.	(6+6.5)

SECTION D – K5 (CO4)

	Answer any ONE of the following	(1 x 15 = 15)
1	State and prove Chebyshev's inequality for continuous random variables. Further, calculate the upper bound for $P(X-2 \geq 2)$, where the discrete variate X takes the value x with probability $2^{-x}, x=1, 2, \dots$	
2		
3	Justify the following assertion using a mathematical proof. "The minimum variance unbiased estimator is always unique".	

SECTION E – K6 (CO5)

	Answer any ONE of the following	(1 x 20 = 20)
1	Create two medical-related data sets with exactly 12 data points each, and then explain how you can	

4	utilize both the regression lines to predict unknown data.
5	Construct the three significant properties of random telegraph process and prove them.

\$\$\$\$\$\$\$\$\$\$\$\$